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1. Introduction

We present the study, via perturbation techniques, of several cases of resonant response of a
non-linear mathematical model of a flexible beam-like structure in slewing motion. Non-linear
curvature is assumed for the beam. Potential application in aerospace and robotic engineering is
envisioned.

Fig. 1 shows the system to be analyzed here. For the non-linear beam-like flexible structure,
cubic geometric non-linear terms are considered in the equations of motion. The harmonic
excitation on the flexible structure will be provided by the prescribed angular displacement y and
its derivatives. This angular displacement is also designated as slewing motion [1].

In this study, the behavior of the angular displacement will be known beforehand and will not
be influenced by the flexible structure dynamics. Thus, the system is said to be under ideal
excitation. If the excitation and the system dynamics were both unknown and coupled, the whole
system would be said to be non-ideal (see Ref. [2]; for a review of the theory see Refs. [3–5]).

For the prescribed excitation profile, yðtÞ; we propose one that makes the flexible structure
oscillate harmonically between the extremes yA (initial condition) and yC ; according to Fig. 1, with
amplitude C and frequency O:

In general, for non-linear systems such as the one presented here, unlike the linear case,
excitations with frequencies multiple or fractional of some of the natural frequencies of the
associated linear system may also lead to resonant conditions [6]. For this reason, many critical
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conditions are carefully analyzed in this paper. When the excitation frequency is near any of the
natural frequencies of the associated linear system, one speaks of a primary resonance. In the
cases in which the excitation frequency has values near the frequencies associated with the non-
linear part of the governing equations (sub-harmonics and super-harmonics), one speaks of
secondary resonances, which are all the others except the primary ones.

The aspect and the construction of the frequency response curves for non-linear systems, such
as our case, differ from those for linear ones. This will allow for the occurrence of some particular
phenomena, as abrupt variations in the amplitudes of vibration in some situations when the
frequency (or the amplitude) of the excitation is slightly changed. This is known as the jump
phenomenon. The regions where the jump phenomenon occurs are regions associated with
bifurcations of solutions and some peculiar behaviors known as chaotic may be displayed by the
vibrating system (see for instance Ref. [7]).

In this paper, to consider the case of primary resonance, where the excitation amplitude must be
of the same order as the non-linear terms and structural damping, the weakly non-linear system
will be investigated in the neighborhood of the beam free vibration.
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Fig. 1. The analyzed model. The beam is represented with no deflection and deflected in the position yA:
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For the study of secondary resonances and non-resonant cases, the excitation amplitude shall
be Oð1Þ: In this case, the weakly non-linear system shall be investigated in the neighborhood of the
linear beam forced vibration. Fig. 2 presents a route to the different considerations to be made in
this investigation.

The analysis developed in this work will provide the first important steps for obtaining the
frequency response curves and the modulation equations for amplitude and phase of the system to
be pursued in further researches. In experimental prototypes or in real systems, the hub to which
the beam is clamped and which represents the source of the excitation can be understood to be
some kind of actuator (for instance, a dc motor for robotic applications).

2. Discusion of the governing equations of motion

Next we will derive special cases of the governing equations of motion taking into account
several resonance possibilities. We will consider particular cases with and without structural
damping.
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Fig. 2. The different orders to be considered for the excitation along the investigations regarding the forced oscillations

of one degree of freedom systems.
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2.1. Secondary resonance and non-resonant cases—excitation: amplitude Oð1Þ and frequency Oð1Þ;
mathematical model without structural damping

The governing equations of motion shall be obtained through an energy method. For this
reason, one needs to know the expressions for the kinetic and potential energies of the system to
be modelled.

The kinetic energy of the rotating beam (where y represents the angular displacement),
assuming transversal (v) and longitudinal (u) displacements for each point along the beam (non-
linear curvature), is given by

T ¼
r
2

Z L

0

fð� ’u þ ’yvÞ2 þ ½’v þ ’yðx � uÞ�2g dx; ð1Þ

where r is the mass per unit of length and L is the length of the undeflected beam.
The potential energy is given by

V ¼
1

2

Z L

0

EAe2 þ EIf02 dx

dl

� �
dx; ð2Þ

where E is the Young’s modulus, A is the area and I is the moment of inertia of the cross-section
of the beam, l is the arc length along the beam, and e is the axial strain. In Eq. (2), f ¼ v0:

By introducing expressions (1) and (2) in the expression due to the extended Hamilton’s
Principle [9], given by

d
Z t2

t1

L dt ¼ d
Z t2

t1

ðT � V Þ dt;

one easily obtains the following dimensional governing equations of motion for the flexible
structure variables v(x; t) and u(x; t):

rð’y2v þ 2’y ’u � .yx þ .yu � .vÞ � EIðviv þ uivv0 þ 4u000v00 þ 6u00v000 þ 3u0viv

� 5
2

v003 � 10v0v00v000 � 5
2

v02vivÞ � EAðu00v0 þ u0v00 � 3
2

v02v00Þ ¼ 0;

rð�.yv � 2’y’v � .u � ’y2x þ ’y2uÞ � EIðv0vivÞ � EAð�u00 þ v0v00Þ ¼ 0:

The variables in the dimensional governing equations of motion are made dimensionless using
the relations

*x ¼
x

L
; *t ¼

t

Tc

; *l ¼
1

L
; .*yðtÞ ¼

T2
c
.yðtÞ
E

; *vðx; tÞ ¼
vðx; tÞ
EL

and

*uðx; tÞ ¼
uðx; tÞ
E2L

;

where B denotes a dimensionless variable (this notation is dropped later), Tc is the characteristic
time defined as Tc ¼ ðL2=b2Þ

ffiffiffiffiffiffiffiffiffiffiffi
r=EI

p
with b ¼ 1:8780 (the first natural frequency for a cantilever

beam), and E51 is a small dimensionless parameter.
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Note that we are approximating the variable v in the non-dimensional governing equations
through the assumed modes method [10] by

vðx; tÞD
XN

i¼1

qiðtÞjiðxÞ;

where jiðxÞ represents the linear, free-vibration modes for the beam when ’yðtÞ � 0: qiðtÞ represents
the generalized co-ordinates describing the motion of the beam. This leads to the following non-
dimensional discretized perturbed governing equations of motion (the algebraic details may be
seen in Ref. [1]):

.qc þ w2
cqc þ ac .yþ E2 ’y2

XN

i¼1

bicqi �
XN

i¼1

XN

j¼1

ðPijc
’yqi ’qj � lijc

.yqiqjÞ

"

þ
XN

i¼1

XN

j¼1

XN

k¼1

Lijkcqið ’qj ’qk þ qj .qkÞ þ
XN

i¼1

XN

j¼1

XN

k¼1

Gijkcqiqjqk

#
¼ 0 ð3Þ

and boundary conditions

jcð0Þ ¼ 0; j0
cð0Þ ¼ 0; j00

cð1Þ ¼ 0 and j000
c ð1Þ ¼ 0: ð4Þ

In Eq. (3), variable u (x; t) is eliminated through the relation given by

uðx; tÞ ¼
1

2

Z
v02 dx þ OðEÞ ¼

1

2

Xn

i¼1

Xn

j¼1

qiqjRijðxÞ þ OðEÞ: ð5Þ

By considering only one mode of vibration in Eq. (3) (for instance, the first flexural mode), the
perturbed governing equation of motion for q1 (t) is given by

.q1 þ w2
1q1 þ a1

.yþ E2½b11
’y2q1 �P111

’yq1 ’q1 � l111
.yq2

1

þ L1111q1 ’q
2
1 þ L1111q2

1 .q1 þ G1111q3
1� ¼ 0: ð6Þ

The coefficients in Eq. (6) are presented in Appendix A. The terms in Eq. (6) that indicate the
coupling between the space-temporal variable v (or, in the discretization, the temporal variable q1

and its derivatives) and the prescribed variable y (and its derivatives) are represented by

E2½b11
’y2q1 �P111

’yq1 ’q1 � l111
.yq2

1�: ð7Þ

By analyzing the ideal system problem, the harmonic prescribed profiles of y (and its
derivatives) will be considered according to

y ¼ C sinðOtÞ ¼ C
1

2i
ðeiOt � e�iOtÞ; ð8Þ

’y ¼ CO cosðOtÞ ¼ C
O
2
ðeiOt þ e�iOtÞ; ð9Þ

.y ¼ �CO2 sinðOtÞ ¼ �C
O2

2i
ðeiOt � e�iOtÞ; ð10Þ

where, at first, the amplitude C shall be considered equal to 1 (therefore, Oð1Þ).
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2.2. Secondary resonances and non-resonant cases—excitation: amplitude Oð1Þ and frequency Oð1Þ;
mathematical model with structural damping

Structural damping, m; is now included in the mathematical model presented in Eq. (6), to make
the model more realistic:

m� ¼ mmc; ð11Þ

where m� is the non-dimensional structural damping; m is the dimensional structural damping

(kg/m s); mc=characteristic damping ¼ L2=b2
ffiffiffiffiffiffiffiffiffi
EIr

p
(m s/kg). By including the structural

damping (according to Eq. (11)) in Eq. (6) of the same order of the non-linear terms (OðE2Þ),
the new governing equation of motion obtained is

.q1 þ w2
1q1 þ a1

.yþ E2½m ’q1 þ b11
’y2q1 �P111

’yq1 ’q1

� l111
.yq2

1 þ L1111q1 ’q
2
1 þ L1111q2

1 .q1 þ G1111q3
1� ¼ 0; ð12Þ

where the non-dimensional structural damping, for convenience, is represented without the (*).

2.3. Primary resonance—excitation: amplitude OðE2Þ and fequency Oð1Þ

The harmonic prescribed profiles to the angular displacement y (and its derivatives), as
presented previously in Eqs. (8)–(10), will now be rescaled according to

y ¼ E2c sinðOtÞ ¼ E2c
1

2i
ðeiOt � e�iOtÞ; ð13Þ

’y ¼ E2cO cosðOtÞ ¼ E2c
O
2
ðeiOt þ e�iOtÞ; ð14Þ

.y ¼ �E2cO2 sinðOtÞ ¼ �E2c
O2

2i
ðeiOt � e�iOtÞ; ð15Þ

where the amplitude C is OðE2Þ and given by C ¼ E2c:
This approach is more appropriate for the study of primary resonance of weakly non-linear

systems [6] and assures that the amplitude of the associated linear system, q10; is not unbounded
when OEwn (where wn represents each one of the linear natural frequencies associated to a
primary resonance of the weakly non-linear system).

In other words, we try to assure that the non-linear terms are not as important as the linear
terms, for, as shall be seen further on, the OðE0Þ solution (or the solution of the associated linear
system, q10) appears on the right side of the OðE2Þ equation for the perturbed part of the solution (q11).

2.4. Primary resonance—excitation: amplitude OðE2Þ and frequency Oð1Þ; mathematical model
without structural damping

By utilizing relations (13)–(15), Eq. (6) is transformed into

.q1 þ w2
1q1 þ E2½a1

.yþ L1111q1 ’q
2
1 þ L1111q2

1 .q1 þ G1111q3
1� ¼ 0; ð16Þ

where all terms of order greater than E were neglected. The coupling terms, as described in Eq. (7),
are included in the higher order neglected terms and really are not important when C ¼ E2c:
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The system behavior here shall be studied in the neighborhood of its linear undamped free
vibration condition.

2.5. Primary resonance—excitation: amplitude OðE2Þ and frequency Oð1Þ; mathematical model with
structural damping

By utilizing relations (13)–(15), Eq. (12) is transformed into

.q1 þ w2
1q1 þ E2½m ’q1 þ a1

.yþ L1111q1 ’q
2
1 þ L1111q2

1 .q1 þ G1111q3
1� ¼ 0: ð17Þ

3. Application of the multiple scale method (MSM): the search for an analytic solution

In this section, we will analyze the solutions by using the classical method of Multiple Scales [8].

3.1. Secondary resonances and non-resonant cases—excitation: amplitude O(1) and frequency
O(1), mathematical model without structural damping

For the solution of the perturbed system represented by Eq. (6), the following uniform
expansion is proposed [8]:

q1 ¼ q10ðT0;T1Þ þ E2q11ðT0;T1Þ: ð18Þ

By substituting Eq. (18) into Eq. (6) and collecting terms of same order of E; one obtains
(a) Order E0:

@2q10

@T2
0

þ w2
1q10 ¼ a1

O2

2i
ðeiOT0 � e�iOT0Þ: ð19Þ

(b) Order E2:

@2q11

@T2
0

þ w2
1q11 ¼ �2

@2q10

@T0 @T1

� �
�

b11O
2

4
ðe2iOT0 þ 2 þ e�2iOT0Þq10

þP111
O
2
ðeiOT0 þ e�iOT0Þq10

@q10

@T0
�

l111O2

2i
ðeiOT0 � eiOT0Þq2

10

� L1111q10
@q10

@T0

� �2

�L1111ðq2
10Þ

@2q10

@T2
0

� G1111q3
10 ¼ 0: ð20Þ

The solution of Eq. (19) is given by

q10 ¼ AðT1Þeiw1T0 þ %AðT1Þe�iw1T0 þ
a1O2

2iðw2
1 � O2Þ

 !
eiOT0 �

a1O2

2iðw2
1 � O2Þ

 !
e�iOT0 : ð21Þ

From here on, for the sake of convenience, A ðT1Þ and %AðT1Þ shall be represented simply by A and
%A: Let it also be

B ¼
a1O2

2iðw2
1 � O2Þ

 !
:
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Substituting Eq. (21) into Eq. (20) yields

@2q11

@T2
0

þ w2
1q11 ¼ � 2iw1

@A

@T1

� �
eiw1T0 þ 2iw1

@ %A

@T1

� �
e�iw1T0 �

b11O
2

4
k1

þP111
O
2
k2 �

l111O2

2i
k3 � L1111ðk4 þ k5Þ � G1111k6; ð22Þ

where

k1 ¼Aeiðw1þ2OÞT0 þ %Ae�iðw1�2OÞT0 þ Bei3OT0 � BeiOT0 þ 2Aeiw1T0 þ 2 %Ae�iw1T0 þ 2BeiOT0

� Be�iOT0 þ Aeiðw1�2OÞT0 þ %Ae�iðw1þ2OÞT0 � Be�i3OT0 ;

k2 ¼ iw1A2eið2w1þOÞT0 þ iw1A2eið2w1�OÞT0 þ iABðw1 þ OÞeiðw1þ2OÞT0 þ 2iOABeiw1T0

� iABðw1 � OÞeiðw1�2OÞT0 � iw1 %A
2e�ið2w1�OÞT0 � iw1 %A

2e�ið2w1þOÞT0 þ iOB2eiOT0

� i %ABðw1 � OÞe�iðw1þ2OÞT0 þ i %ABðw1 � OÞe�iðw1�2OÞT0 þ 2iO %ABe�iw1T0 þ iOB2ei3OT0

� iOB2e�i3OT0 � iOB2e�iOT0 ;

k3 ¼A2eið2w1þOÞT0 � A2eið2w1�OÞT0 þ 2ABeiðw1þ2OÞT0 þ 2ABeiðw1�2OÞT0 � 4ABeiw1T0

þ ð2A %A � 3B2ÞeiOT0 � ð2A %A � 3B2Þe�iOT0 þ 2 %ABe�iðw1�2OÞT0 þ 2 %ABe�iðw1þ2OÞT0

þ B2ei3OT0 � B2e�i3OT0 � 4 %ABe�iw1T0 þ %A2e�ið2w1�OÞT0 � %A2e�ið2w1þOÞT0 ;

k4 ¼ � w2
1A3ei3w1T0 þ ðw2

1A2 %A � 2O2AB2Þeiw1T0 � ð2w1OA2B þ w2
1A2BÞeið2w1þOÞT0

� ð2w1OA2B � w2
1A2BÞeið2w1�OÞT0 þ ð2w2

1A %AB � O2B3ÞeiOT0 � w2
1
%A3e�i3w1T0

� ð2w2
1A %AB � O2B3Þe�iOT0 � ð2w1OAB2 þ O2AB2Þeiðw1þ2OÞT0

� O2B3ei3OT0 þ ð2w1OAB2 � O2AB2Þeiðw1�2OÞT0 þ ðw2
1A %A2 � 2O2 %AB2Þe�iw1T0

þ O2B3e�i3OT0 þ ð2w1O %A2B � w2
1
%A2BÞe�ið2w1�OÞT0 þ ð2w1O %A2B þ w2

1
%A2BÞe�ið2w1þOÞT0

þ ð2w1O %AB2 � O2 %AB2Þe�iðw1�2OÞT0 � ð2w1O %AB2 þ O2 %AB2Þe�iðw1þ2OÞT0 ;

k5 ¼ � w2
1A3ei3w1T0 þ ð2w2

1AB2 þ 4AB2O2 � 2w2
1A2 %AÞeiw1T0 þ O2B3e�i3OT0

� O2B3ei3OT0 þ ð3O2B3 � 2O2A %ABÞeiOT0 þ ð2w2
1
%AB2 þ 4O2 %AB2 � 3w2

1A %A2Þe�iw1T0

� w2
1
%A3e�i3w1T0 þ ð2O2A %AB � 3O2B3Þe�iOT0 � ðw2

1A2B þ O2A2BÞeið2w1þOÞT0

þ ð2w2
1A2B þ O2A2BÞeið2w1�OÞT0 � ðw2

1AB2 þ 2O2AB2Þeiðw1þ2OÞT0

� ðw2
1AB2 þ 2O2AB2Þeiðw1�2OÞT0 � ð2w2

1
%A2B þ O2 %A2BÞe�ið2w1�OÞT0

þ ð2w2
1
%A2B þ O2 %A2BÞe�ið2w1þOÞT0 � ðw2

1
%AB2 þ 2O2 %AB2Þe�iðw1�2OÞT0

� ðw2
1
%AB2 þ 2O2 %AB2Þe�iðw1þ2OÞT0 ;

ARTICLE IN PRESS

A. Fenili et al. / Journal of Sound and Vibration 268 (2003) 825–838832



k6 ¼A3ei3w1T0 þ %A3e�i3w1T0 � B3e�i3OT0 þ B3ei3OT0 þ ð3A2 %A � 6AB2Þeiw1T0

þ ð2A %AB � 3B3ÞeiOT0 þ ð3B3 � 2A %ABÞe�iOT0 þ ð3A %A2 � 6 %AB2Þe�iw1T0

þ ð3A2BÞeið2w1þOÞT0 � ð3A2BÞeið2w1�OÞT0 þ ð3AB2Þeiðw1þ2OÞT0 þ ð3AB2Þeiðw1�2OÞT0

þ ð3 %A2BÞe�ið2w1�OÞT0 � ð3 %A2BÞe�ið2w1þOÞT0 þ ð3 %AB2Þe�iðw1�2OÞT0 þ ð3 %AB2Þe�iðw1þ2OÞT0 :

In Section 4 the conditions will be shown for which the secular terms and the small divisors in
Eq. (22) do not unbound the solution of Eq. (6). In Section 4 all the resonant cases for this system
will be presented according to the adopted mathematical model.

3.2. Secondary resonances and non-resonant cases—excitation: amplitude Oð1) and frequency
Oð1), mathematical model with structural damping

Following the same steps previously presented for the undamped case, in the right side of
Eq. (20) shall now be introduced the term

�m
@q10

@T0

� �
: ð23Þ

In Eq. (22), the expression

�mðiAw1e
iw1T0 � i %Aw1e

�iw1T0 þ iBOeiOT0 þ iBOe�iOT0Þ ð24Þ

will be introduced, where the term iAw1e
iw1T0 is associated with secular terms that compromise the

desired periodic solution and the term iBOeiOT0 is associated with small divisor terms that equally
compromise the wanted solution (when OEw1) and both shall be properly eliminated.

3.3. Primary resonance—excitation: amplitude OðE2Þ and frequency Oð1Þ; mathematical model
without structural damping

For the solution of the perturbed system represented by Eq. (16), it is proposed to use the same
uniform expansion presented in Eq. (18). Substituting the expansion (18) into Eq. (16) and
collecting terms of same order of E; one obtains

(1) Order E0:

@2q10

@T2
0

þ w2
1q10 ¼ 0: ð25Þ

(2) Order E2:

@2q11

@T2
0

þ w2
1q11 ¼ �2

@2q10

@T0 @T1

� �
� a1c

O2

2i
ðeiOT0 � e�iOT0Þ � L1111q10

@q10

@T0

� �2

� L1111ðq2
10Þ

@2q10

@T2
0

� G1111q3
10 ¼ 0: ð26Þ

The solution of Eq. (25) is given by

q10 ¼ AðT1Þeiw1T0 þ %AðT1Þe�iw1T0 : ð27Þ
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Substituting Eq. (27) into Eq. (26) yields

@2q11

@T2
0

þ w2
1q11 ¼ � 2iw1

@A

@T1

� �
eiw1T0 þ 2iw1

@ %A

@T1

� �
e�iw1T0 � a1c

O2

2i
ðeiOT0 � e�iOT0Þ

� L1111ð�w2
1A3ei3w1T0 þ w2

1A2 %Aeiw1T0 � w2
1
%A3e�i3w1T0 þ w2

1A %A2e�iw1T0Þ

� L1111ð�w2
1A3ei3w1T0 � 2w2

1A2 %Aeiw1T0 � 3w2
1A %A2e�iw1T0 � w2

1
%A3e�i3w1T0Þ

� G1111ðA3ei3w1T0 þ %A3e�i3w1T0 þ 3A2 %Aeiw1T0 þ 3A %A2e�iw1T0Þ: ð28Þ

The critical conditions related to the solution of Eq. (28) (resonant cases) shall be discussed in
the following section.

3.4. Primary resonance—excitation: amplitude OðE2Þ and frequency Oð1Þ; mathematical model with

structural damping

The same discussion presented previously is still valid here. Eq. (25) is again obtained (and
solution (27)). In Eq. (26), one must add now, to the right side, the term given by Eq. (23). In
Eq. (28), one must add now, to the right side, the terms presented in

�m
@q10

@T0

� �
¼ �mðiw1Aeiw1T0 � iw1 %Ae�iw1T0Þ: ð29Þ

4. On location of the resonant cases

The equations from which the resonant cases considering O away from zero and away from w1;
otherwise will be investigated the secondary resonance cases, will be investigated are Eq. (22) for
the model presented in Appendix A and Eq. (22) plus the terms presented in Eq. (24) added to the
right side of the model presented in Section 3.1. The equations from which the primary resonance
cases will be investigated are: Eq. (28) for the model presented in Section 3.3, and Eq. (28) plus the
terms presented in Eq. (29) added to the right side for the model presented in Section 3.1 can be
written in the form

.x þ w2
1x ¼ Terms multiplied by e7iXT0 ; ð30Þ

where X represents each one of the exponents presented in Table 1 (secondary resonances) and 2
(primary resonances ).

The terms eiðw1þ2OÞT0 and eiðw1�2OÞT0 that appear in Eq. (22) are not considered critical
terms in the investigation regarding secondary resonances because the excitation frequency,
O; is away from zero. In the same way, the terms eiOT0 ; e�iðw1�2OÞT0 and eið2w1�OÞT0 that appear
in the same Eq. (22) are not critical in the analysis of secondary resonances because O is away
from w1:

Table 2 presents the critical situations related to the investigation of the primary resonance
obtained through Eq. (28).
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5. On the case XE0—excitation: amplitude Oð1Þand frequency Oðe2Þ

For the case when the excitation frequency, O; is near zero, one has: O ¼ 0 þ E2s ¼ E2s or
Ot ¼ OT0 ¼ E2sT0 ¼ sT1 and the prescribed harmonic profiles for y (and its derivatives) are
considered according to

y ¼ C sinðE2sT0Þ ¼ C
1

2i
ðeisT1 � e�isT1Þ; ð31Þ

’y ¼ Ce2s cosðE2sT0Þ ¼ C
E2s
2

ðeisT1 þ e�isT1Þ; ð32Þ
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Table 1

Presentation of the terms that produce secular terms or small divisors in the desired periodic solution for the excitation

frequency, O; away form zero and w1 (secondary resonances)

Term in Eq. (17) multiplied

by

Produces in the desired solution an

effect of the kind

Critical condition Situation

eiw1T0 Secular term Always 1

e�iw1T0 None

ei3w1T0 None

e�i3w1T0 None

eiOT0 None

e�iOT0 None

ei3OT0 Small divisor OE1
3

w1 2

e�i3OT0 None

eiðw1þ2OÞT0 None

e�iðw1þ2OÞT0 None

eiðw1�2OÞT0 None

e�iðw1�2OÞT0 None

eið2w1þOÞT0 None

e�ið2w1þOÞT0 None

eið2w1�OÞT0 None

e�ið2w1þOÞT0 Small divisor OE3 w1 3

Table 2

Presentation of the terms that produce secular terms or small divisors in the desired periodic solution for the excitation

frequency, O; away form zero and near w1 (primary resonance)

Term in Eq. (23) multiplied

by

Produces in the desired solution Critical condition Situation

eiw1T0 Secular term Always 4

eiw1T0

e�iw1T0 None

ei3w1T0 None

e�i3w1T0 None

eiOT0 Small divisor OEw1 5

e�iOT0 None
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.y ¼ �CE4s2 sinðE2sT0Þ ¼ �C
E4s2

2i
ðeisT1 � e�isT1Þ: ð33Þ

5.1. The case OE0—excitation: amplitude Oð1Þ and frequency OðE2Þ; mathematical model without
structural damping

By utilizing Eq. (31) to Eq. (33), the governing equation of motion for the first flexural mode of
vibration is given by

.q1 þ w2
1q1 þ E2½L1111q1 ’q

2
1 þ L1111q2

1 .q1 þ G1111q3
1� ¼ 0: ð34Þ

The rest of the procedures previously discussed here are identical. In this case, the order e0

solution will be given by

q10 ¼ AðT1Þeiw1T0 þ %AðT1Þe�iw1T0 ð35Þ

and the terms that will produce secular terms in the desired solution shall be collected from

@2q11

@T2
0

þ w2
1q11 ¼ � 2iw1

@A

@T1

� �
eiw1T0 þ 2iw1

@ %A

@T1

� �
e�iw1T0

� L1111ð�w2
1A3ei3w1T0 þ w2

1A2 %Aeiw1T0 þ w2
1
%A3e�i3w1T0 þ w2

1A %A2e�iw1T0

� w2
1A3ei3w1T0 � 2w2

1A2 %Aeiw1T0 � 3w2
1A %A2e�iw1T0 � w2

1
%A3e�i3w1T0Þ

� G1111ðA3ei3w1T0 þ %A3e�i3w1T0 � 3A2 %Aeiw1T0 þ 3A %A2e�iw1T0Þ ¼ 0: ð36Þ

Now, the terms related to the production of small divisors in the wanted solution will not exist
(Table 3).

5.2. The case OE0—excitation: amplitude Oð1Þ and frequency OðE2Þ; mathematical model with
structural damping

Considering the structural damping, Eq. (34) turns into

.q1 þ w2
1q1 þ E2½m ’q1 þ L1111q1 ’q

2
1 þ L1111q2

1 .q1 þ G1111q3
1� ¼ 0 ð37Þ
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Table 3

Presentation of the terms that produces secular terms or small divisors in the desired periodic solution for the excitation

frequency OE0

Term in Eq. (30) multiplied by Produces in the desired solution an Critical condition Situation

eiw1T0 Secular term Always 6

eiw1T0

e�iw1T0 None

ei3w1T0 None

e�i3w1T0 None
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and the terms that will produce secular terms and small divisor terms in the wanted solution shall
be collected from Eq. (36) plus the additional terms given by Eq. (29).

6. Some concluding remarks

Table 4 gives the critical cases to be investigated and all the possible kinds of resonance one can
find in this dynamical system. Each one of the cases of interest shown in Table 4 must be
investigated separately and will have its particular frequency response function, its particular
amplitude and phase modulation equations and conditions for stability and chaos [8]. In future
works, we will analyze each problem separately.
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Appendix A. Coefficients of the ordinary diferential equation for the temporal component Q1 of

VðX ;TÞ

Here, we derive the coefficients for any number of admissible functions, fk (where k ¼ i or j or
k or c in the following expressions) [1]:

fðxÞ ¼ coshðaiLxÞ � cosðaiLxÞ � aiðsinhðaiLxÞ � sinðaiLxÞÞ;

ai ¼
coshðaiLÞ þ cosðaiLÞ
sinhðaiLÞ þ sinðaiLÞ

;

w2
j ¼

w2
n

ða1LÞ4
; RijðxÞ ¼

Z x

0

f0
iðxÞf

0
jðxÞ dx ¼ RjiðxÞ; ViðxÞ ¼ �

Z 1

x

fiðxÞ dx;
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Table 4

Critical cases of interest to be investigated (including the non-resonant case)

Case Kind of resonance

I: situation 1+situation 2 1:1/3

II: situation 6 1:0

III: situation 1+situation 3 1:3

IV: situation 4+situation 5 1:1

V: region away from any resonance Non-resonant case
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SijðxÞ ¼ �
Z 1

x

Z Z

0

f0
iðxÞf

0
jðxÞ dx

� �
dZ; WijðxÞ ¼ �

Z 1

x

f0
iðxÞfjðxÞ dx; ac ¼

Z 1

0

xfc dx;

bic ¼
Z 1

0

xf0
ifc þ

1

2
ðx2 � 1Þf00

i fc

� �
dx

� �
� 1; Pijc ¼

Z 1

0

ð2Rijfc � 2f00
i Vjfc � 2f0

ifjfcÞ dx;

lijc ¼
Z 1

0

�
1

2
Rijfc þ f00

i Vjfc þ f0
ifjfc

� �
dx; Lijkc ¼

Z 1

0

ðSjkf
00
i fc þ Rjkf

0
ifcÞ dx;

Gijkc ¼
Z 1

0

3

ðacLÞ
4
f0

if
00
j f

000
k fc þ

3

2ðacLÞ
4
f00

i f
00
j f

00fc þ w2
j ðf

0
ifjf

0
kfc þ Wijf

00
kfcÞ

� �
dx:

In the cases dealt in this work, one considers only one admissible function and, therefore, one has
i ¼ j ¼ k ¼ c ¼ 1:
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